1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
use std::array;
use std::io::Write;
use arrayvec::ArrayVec;
use valence_protocol::{Encode, VarInt};
use super::chunk::bit_width;
/// `HALF_LEN` must be equal to `ceil(LEN / 2)`.
#[derive(Clone, Debug)]
pub(super) enum PalettedContainer<T, const LEN: usize, const HALF_LEN: usize> {
Single(T),
Indirect(Box<Indirect<T, LEN, HALF_LEN>>),
Direct(Box<[T; LEN]>),
}
#[derive(Clone, Debug)]
pub(super) struct Indirect<T, const LEN: usize, const HALF_LEN: usize> {
/// Each element is a unique instance of `T`. The length of the palette is
/// always ≥2.
palette: ArrayVec<T, 16>,
/// Each half-byte is an index into `palette`.
indices: [u8; HALF_LEN],
}
impl<T: Copy + Eq + Default, const LEN: usize, const HALF_LEN: usize>
PalettedContainer<T, LEN, HALF_LEN>
{
pub(super) fn new() -> Self {
assert_eq!(LEN.div_ceil(2), HALF_LEN);
assert_ne!(LEN, 0);
Self::Single(T::default())
}
pub(super) fn fill(&mut self, val: T) {
*self = Self::Single(val)
}
#[track_caller]
pub(super) fn get(&self, idx: usize) -> T {
debug_assert!(idx < LEN);
match self {
Self::Single(elem) => *elem,
Self::Indirect(ind) => ind.get(idx),
Self::Direct(elems) => elems[idx],
}
}
#[track_caller]
pub(super) fn set(&mut self, idx: usize, val: T) -> T {
debug_assert!(idx < LEN);
match self {
Self::Single(old_val) => {
if *old_val == val {
*old_val
} else {
// Upgrade to indirect.
let old = *old_val;
let mut ind = Box::new(Indirect {
palette: ArrayVec::from_iter([old, val]),
// All indices are initialized to index 0 (the old element).
indices: [0; HALF_LEN],
});
ind.indices[idx / 2] = 1 << (idx % 2 * 4);
*self = Self::Indirect(ind);
old
}
}
Self::Indirect(ind) => {
if let Some(old) = ind.set(idx, val) {
old
} else {
// Upgrade to direct.
*self = Self::Direct(Box::new(array::from_fn(|i| ind.get(i))));
self.set(idx, val)
}
}
Self::Direct(vals) => {
let old = vals[idx];
vals[idx] = val;
old
}
}
}
pub(super) fn shrink_to_fit(&mut self) {
match self {
Self::Single(_) => {}
Self::Indirect(ind) => {
let mut new_ind = Indirect {
palette: ArrayVec::new(),
indices: [0; HALF_LEN],
};
for i in 0..LEN {
new_ind.set(i, ind.get(i));
}
if new_ind.palette.len() == 1 {
*self = Self::Single(new_ind.palette[0]);
} else {
**ind = new_ind;
}
}
Self::Direct(dir) => {
let mut ind = Indirect {
palette: ArrayVec::new(),
indices: [0; HALF_LEN],
};
for (i, val) in dir.iter().copied().enumerate() {
if ind.set(i, val).is_none() {
return;
}
}
*self = if ind.palette.len() == 1 {
Self::Single(ind.palette[0])
} else {
Self::Indirect(Box::new(ind))
};
}
}
}
/// Encodes the paletted container in the format that Minecraft expects.
///
/// - **`writer`**: The [`Write`] instance to write the paletted container
/// to.
/// - **`to_bits`**: A function to convert the element type to bits. The
/// output must be less than two to the power of `direct_bits`.
/// - **`min_indirect_bits`**: The minimum number of bits used to represent
/// the element type in the indirect representation. If the bits per index
/// is lower, it will be rounded up to this.
/// - **`max_indirect_bits`**: The maximum number of bits per element
/// allowed in the indirect representation. Any higher than this will
/// force conversion to the direct representation while encoding.
/// - **`direct_bits`**: The minimum number of bits required to represent
/// all instances of the element type. If `N` is the total number of
/// possible values, then `DIRECT_BITS` is `floor(log2(N - 1)) + 1`.
pub(super) fn encode_mc_format<W, F>(
&self,
mut writer: W,
mut to_bits: F,
min_indirect_bits: usize,
max_indirect_bits: usize,
direct_bits: usize,
) -> anyhow::Result<()>
where
W: Write,
F: FnMut(T) -> u64,
{
debug_assert!(min_indirect_bits <= 4);
debug_assert!(min_indirect_bits <= max_indirect_bits);
debug_assert!(max_indirect_bits <= 64);
debug_assert!(direct_bits <= 64);
match self {
Self::Single(val) => {
// Bits per entry
0_u8.encode(&mut writer)?;
// Palette
VarInt(to_bits(*val) as i32).encode(&mut writer)?;
// Number of longs
VarInt(0).encode(writer)?;
}
Self::Indirect(ind) => {
let bits_per_entry = min_indirect_bits.max(bit_width(ind.palette.len() - 1));
// Encode as direct if necessary.
if bits_per_entry > max_indirect_bits {
// Bits per entry
(direct_bits as u8).encode(&mut writer)?;
// Number of longs in data array.
VarInt(compact_u64s_len(LEN, direct_bits) as i32).encode(&mut writer)?;
// Data array
encode_compact_u64s(
writer,
(0..LEN).map(|i| to_bits(ind.get(i))),
direct_bits,
)?;
} else {
// Bits per entry
(bits_per_entry as u8).encode(&mut writer)?;
// Palette len
VarInt(ind.palette.len() as i32).encode(&mut writer)?;
// Palette
for val in &ind.palette {
VarInt(to_bits(*val) as i32).encode(&mut writer)?;
}
// Number of longs in data array.
VarInt(compact_u64s_len(LEN, bits_per_entry) as i32).encode(&mut writer)?;
// Data array
encode_compact_u64s(
writer,
ind.indices
.iter()
.copied()
.flat_map(|byte| [byte & 0b1111, byte >> 4])
.map(u64::from)
.take(LEN),
bits_per_entry,
)?;
}
}
Self::Direct(dir) => {
// Bits per entry
(direct_bits as u8).encode(&mut writer)?;
// Number of longs in data array.
VarInt(compact_u64s_len(LEN, direct_bits) as i32).encode(&mut writer)?;
// Data array
encode_compact_u64s(writer, dir.iter().copied().map(to_bits), direct_bits)?;
}
}
Ok(())
}
}
impl<T: Copy + Eq + Default, const LEN: usize, const HALF_LEN: usize> Default
for PalettedContainer<T, LEN, HALF_LEN>
{
fn default() -> Self {
Self::new()
}
}
impl<T: Copy + Eq + Default, const LEN: usize, const HALF_LEN: usize> Indirect<T, LEN, HALF_LEN> {
pub(super) fn get(&self, idx: usize) -> T {
let palette_idx = self.indices[idx / 2] >> (idx % 2 * 4) & 0b1111;
self.palette[palette_idx as usize]
}
pub(super) fn set(&mut self, idx: usize, val: T) -> Option<T> {
let palette_idx = if let Some(i) = self.palette.iter().position(|v| *v == val) {
i
} else {
self.palette.try_push(val).ok()?;
self.palette.len() - 1
};
let old_val = self.get(idx);
let u8 = &mut self.indices[idx / 2];
let shift = idx % 2 * 4;
*u8 = (*u8 & !(0b1111 << shift)) | ((palette_idx as u8) << shift);
Some(old_val)
}
}
#[inline]
fn compact_u64s_len(vals_count: usize, bits_per_val: usize) -> usize {
let vals_per_u64 = 64 / bits_per_val;
vals_count.div_ceil(vals_per_u64)
}
#[inline]
fn encode_compact_u64s(
mut w: impl Write,
mut vals: impl Iterator<Item = u64>,
bits_per_val: usize,
) -> anyhow::Result<()> {
debug_assert!(bits_per_val <= 64);
let vals_per_u64 = 64 / bits_per_val;
loop {
let mut n = 0;
for i in 0..vals_per_u64 {
match vals.next() {
Some(val) => {
debug_assert!(val < 2_u128.pow(bits_per_val as u32) as u64);
n |= val << (i * bits_per_val);
}
None if i > 0 => return n.encode(&mut w),
None => return Ok(()),
}
}
n.encode(&mut w)?;
}
}
#[cfg(test)]
mod tests {
use rand::Rng;
use super::*;
fn check<T: Copy + Eq + Default, const LEN: usize, const HALF_LEN: usize>(
p: &PalettedContainer<T, LEN, HALF_LEN>,
s: &[T],
) -> bool {
assert_eq!(s.len(), LEN);
(0..LEN).all(|i| p.get(i) == s[i])
}
#[test]
fn random_assignments() {
const LEN: usize = 100;
let range = 0..64;
let mut rng = rand::thread_rng();
for _ in 0..20 {
let mut p = PalettedContainer::<u32, LEN, { LEN / 2 }>::new();
let init = rng.gen_range(range.clone());
p.fill(init);
let mut a = [init; LEN];
assert!(check(&p, &a));
let mut rng = rand::thread_rng();
for _ in 0..LEN * 10 {
let idx = rng.gen_range(0..LEN);
let val = rng.gen_range(range.clone());
assert_eq!(p.get(idx), p.set(idx, val));
assert_eq!(val, p.get(idx));
a[idx] = val;
p.shrink_to_fit();
assert!(check(&p, &a));
}
}
}
}