Struct valence::ecs::system::EntityCommands

pub struct EntityCommands<'a> { /* private fields */ }
Expand description

A list of commands that will be run to modify an entity.

Implementations§

§

impl EntityCommands<'_>

pub fn id(&self) -> Entity

Returns the Entity id of the entity.

§Example
fn my_system(mut commands: Commands) {
    let entity_id = commands.spawn_empty().id();
}

pub fn reborrow(&mut self) -> EntityCommands<'_>

Returns an EntityCommands with a smaller lifetime. This is useful if you have &mut EntityCommands but you need EntityCommands.

pub fn insert(&mut self, bundle: impl Bundle) -> &mut EntityCommands<'_>

Adds a Bundle of components to the entity.

This will overwrite any previous value(s) of the same component type.

§Panics

The command will panic when applied if the associated entity does not exist.

To avoid a panic in this case, use the command Self::try_insert instead.

§Example
#[derive(Component)]
struct Health(u32);
#[derive(Component)]
struct Strength(u32);
#[derive(Component)]
struct Defense(u32);

#[derive(Bundle)]
struct CombatBundle {
    health: Health,
    strength: Strength,
}

fn add_combat_stats_system(mut commands: Commands, player: Res<PlayerEntity>) {
    commands
        .entity(player.entity)
        // You can insert individual components:
        .insert(Defense(10))
        // You can also insert pre-defined bundles of components:
        .insert(CombatBundle {
            health: Health(100),
            strength: Strength(40),
        })
        // You can also insert tuples of components and bundles.
        // This is equivalent to the calls above:
        .insert((
            Defense(10),
            CombatBundle {
                health: Health(100),
                strength: Strength(40),
            },
        ));
}

pub fn try_insert(&mut self, bundle: impl Bundle) -> &mut EntityCommands<'_>

Tries to add a Bundle of components to the entity.

This will overwrite any previous value(s) of the same component type.

§Note

Unlike Self::insert, this will not panic if the associated entity does not exist.

§Example
#[derive(Component)]
struct Health(u32);
#[derive(Component)]
struct Strength(u32);
#[derive(Component)]
struct Defense(u32);

#[derive(Bundle)]
struct CombatBundle {
    health: Health,
    strength: Strength,
}

fn add_combat_stats_system(mut commands: Commands, player: Res<PlayerEntity>) {
  commands.entity(player.entity)
   // You can try_insert individual components:
    .try_insert(Defense(10))

   // You can also insert tuples of components:
    .try_insert(CombatBundle {
        health: Health(100),
        strength: Strength(40),
    });

   // Suppose this occurs in a parallel adjacent system or process
   commands.entity(player.entity)
     .despawn();

   commands.entity(player.entity)
   // This will not panic nor will it add the component
     .try_insert(Defense(5));
}

pub fn remove<T>(&mut self) -> &mut EntityCommands<'_>
where T: Bundle,

Removes a Bundle of components from the entity.

§Example
#[derive(Component)]
struct Health(u32);
#[derive(Component)]
struct Strength(u32);
#[derive(Component)]
struct Defense(u32);

#[derive(Bundle)]
struct CombatBundle {
    health: Health,
    strength: Strength,
}

fn remove_combat_stats_system(mut commands: Commands, player: Res<PlayerEntity>) {
    commands
        .entity(player.entity)
        // You can remove individual components:
        .remove::<Defense>()
        // You can also remove pre-defined Bundles of components:
        .remove::<CombatBundle>()
        // You can also remove tuples of components and bundles.
        // This is equivalent to the calls above:
        .remove::<(Defense, CombatBundle)>();
}

pub fn remove_by_id( &mut self, component_id: ComponentId, ) -> &mut EntityCommands<'_>

Removes a component from the entity.

pub fn clear(&mut self) -> &mut EntityCommands<'_>

Removes all components associated with the entity.

pub fn despawn(&mut self)

Despawns the entity. This will emit a warning if the entity does not exist.

See World::despawn for more details.

§Note

This won’t clean up external references to the entity (such as parent-child relationships if you’re using bevy_hierarchy), which may leave the world in an invalid state.

§Example
fn remove_character_system(
    mut commands: Commands,
    character_to_remove: Res<CharacterToRemove>
)
{
    commands.entity(character_to_remove.entity).despawn();
}

pub fn add<M>( &mut self, command: impl EntityCommand<M>, ) -> &mut EntityCommands<'_>
where M: 'static,

Pushes an EntityCommand to the queue, which will get executed for the current Entity.

§Examples
commands
    .spawn_empty()
    // Closures with this signature implement `EntityCommand`.
    .add(|entity: EntityWorldMut| {
        println!("Executed an EntityCommand for {:?}", entity.id());
    });

pub fn retain<T>(&mut self) -> &mut EntityCommands<'_>
where T: Bundle,

Removes all components except the given Bundle from the entity.

This can also be used to remove all the components from the entity by passing it an empty Bundle.

§Example
#[derive(Component)]
struct Health(u32);
#[derive(Component)]
struct Strength(u32);
#[derive(Component)]
struct Defense(u32);

#[derive(Bundle)]
struct CombatBundle {
    health: Health,
    strength: Strength,
}

fn remove_combat_stats_system(mut commands: Commands, player: Res<PlayerEntity>) {
    commands
        .entity(player.entity)
        // You can retain a pre-defined Bundle of components,
        // with this removing only the Defense component
        .retain::<CombatBundle>()
        // You can also retain only a single component
        .retain::<Health>()
        // And you can remove all the components by passing in an empty Bundle
        .retain::<()>();
}

pub fn log_components(&mut self)

Logs the components of the entity at the info level.

§Panics

The command will panic when applied if the associated entity does not exist.

pub fn commands(&mut self) -> Commands<'_, '_>

Returns the underlying Commands.

pub fn observe<E, B, M>( &mut self, system: impl IntoObserverSystem<E, B, M>, ) -> &mut EntityCommands<'_>
where E: Event, B: Bundle,

Creates an Observer listening for a trigger of type T that targets this entity.

Trait Implementations§

§

impl BuildChildren for EntityCommands<'_>

§

fn with_children( &mut self, spawn_children: impl FnOnce(&mut ChildBuilder<'_>), ) -> &mut EntityCommands<'_>

Takes a closure which builds children for this entity using [ChildBuilder].
§

fn push_children(&mut self, children: &[Entity]) -> &mut EntityCommands<'_>

Pushes children to the back of the builder’s children. For any entities that are already a child of this one, this method does nothing. Read more
§

fn insert_children( &mut self, index: usize, children: &[Entity], ) -> &mut EntityCommands<'_>

Inserts children at the given index. Read more
§

fn remove_children(&mut self, children: &[Entity]) -> &mut EntityCommands<'_>

Removes the given children Read more
§

fn add_child(&mut self, child: Entity) -> &mut EntityCommands<'_>

Adds a single child. Read more
§

fn clear_children(&mut self) -> &mut EntityCommands<'_>

Removes all children from this entity. The [Children] component will be removed if it exists, otherwise this does nothing.
§

fn replace_children(&mut self, children: &[Entity]) -> &mut EntityCommands<'_>

Removes all current children from this entity, replacing them with the specified list of entities. Read more
§

fn set_parent(&mut self, parent: Entity) -> &mut EntityCommands<'_>

Sets the parent of this entity. Read more
§

fn remove_parent(&mut self) -> &mut EntityCommands<'_>

Removes the [Parent] of this entity. Read more
§

impl DespawnRecursiveExt for EntityCommands<'_>

§

fn despawn_recursive(self)

Despawns the provided entity and its children. This will emit warnings for any entity that does not exist.

§

fn despawn_descendants(&mut self) -> &mut EntityCommands<'_>

Despawns all descendants of the given entity.
§

impl ReflectCommandExt for EntityCommands<'_>

§

fn insert_reflect( &mut self, component: Box<dyn Reflect>, ) -> &mut EntityCommands<'_>

Adds the given boxed reflect component to the entity using the reflection data in AppTypeRegistry. Read more
§

fn insert_reflect_with_registry<T>( &mut self, component: Box<dyn Reflect>, ) -> &mut EntityCommands<'_>
where T: Resource + AsRef<TypeRegistry>,

Same as insert_reflect, but using the T resource as type registry instead of AppTypeRegistry. Read more
§

fn remove_reflect( &mut self, component_type_path: impl Into<Cow<'static, str>>, ) -> &mut EntityCommands<'_>

Removes from the entity the component with the given type name registered in AppTypeRegistry. Read more
§

fn remove_reflect_with_registry<T>( &mut self, component_type_name: impl Into<Cow<'static, str>>, ) -> &mut EntityCommands<'_>
where T: Resource + AsRef<TypeRegistry>,

Same as remove_reflect, but using the T resource as type registry instead of AppTypeRegistry.

Auto Trait Implementations§

§

impl<'a> Freeze for EntityCommands<'a>

§

impl<'a> RefUnwindSafe for EntityCommands<'a>

§

impl<'a> Send for EntityCommands<'a>

§

impl<'a> Sync for EntityCommands<'a>

§

impl<'a> Unpin for EntityCommands<'a>

§

impl<'a> !UnwindSafe for EntityCommands<'a>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<T> Downcast for T
where T: Any,

§

fn into_any(self: Box<T>) -> Box<dyn Any>

Convert Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.
§

fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>

Convert Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be further downcast into Rc<ConcreteType> where ConcreteType implements Trait.
§

fn as_any(&self) -> &(dyn Any + 'static)

Convert &Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &Any’s vtable from &Trait’s.
§

fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)

Convert &mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot generate &mut Any’s vtable from &mut Trait’s.
§

impl<T> DowncastSync for T
where T: Any + Send + Sync,

§

fn into_any_arc(self: Arc<T>) -> Arc<dyn Any + Sync + Send>

Convert Arc<Trait> (where Trait: Downcast) to Arc<Any>. Arc<Any> can then be further downcast into Arc<ConcreteType> where ConcreteType implements Trait.
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
source§

impl<T> Same for T

source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> ConditionalSend for T
where T: Send,